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Remote Sensing Vegetation Hydrological States
Using Passive Microwave Measurements

Qilong Min, Bing Lin, and Rui Li

Abstract—A novel technique that links vegetation properties
and ET fluxes with a microwave “emissivity difference vegetation
index” (EDVI) has been developed and applied to the Amazon
region. These EDVI values can be derived from a combination of
satellite microwave measurements with visible and infrared ob-
servations. This technique is applicable both day and night times
under all-weather conditions, which is particularly important
for remote sensing since under cloudy conditions classic optical
techniques are not applicable. For the Amazon basin, EDVI
captures vegetation variation from dense vegetation (rain-forest)
to short and/or sparse vegetation (savanna) under all-weather
conditions. Good relations between microwave based EDVI and
optical indexes of NDVI and EVI are found for various vegetation
conditions. More importantly, EDVI shows no sign of saturation
even for the tropical rain forest, while NDVI (and EVI to a lesser
extent) is clearly saturated. Over the Amazon region in a normal
dry season day, EDVI can provide the vegetation information over
98% of the land surface while the optical vegetation indexes can
be retrieved only for a small fraction (14%) of the region.

Index Terms—Emissivity difference vegetation index (EDVI),
passive microwave, remote sensing, vegetation.

I. INTRODUCTION

T HE terrestrial vegetation and ecological systems play
important roles in global change and climate variations.

An accurate depiction of evapotranspiration (ET) and pho-
tosynthesis processes is essential in the understanding of the
response and influence of the vegetation system to water,
energy, and carbon cycles of the climate. Since clouds have
controlling effects on terrestrial carbon uptake [1], it is cru-
cial to monitor vegetation-atmosphere interactions under all
weather conditions.

Existing satellite remote sensing techniques for ET, photo-
synthesis, and vegetation state estimations are generally based
on measurements at visible (VIS) and near-infrared (NIR)
wavelengths [2]–[6 and references therein], such as normalized
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difference vegetation index (NDVI) and enhanced vegetation
index (EVI). These spectral measurements are directly related
to the absorbed fraction of photosynthetically active radiation
(PAR) and have certain correlations with moisture and carbon
exchanges of atmosphere and land surface. Another advantage
of these indexes is their higher spatial resolutions compared
to those at other wavelengths, which is critical in account
for the heterogeneity of land surface. The limitations of the
measurements are their low temporal resolution caused by high
sensitivity to clouds and aerosols (unable to provide informa-
tion under cloudy conditions) and the saturation at intermediate
values of leaf area index (LAI) [7]–[11]. NDVI may represent
total vegetation water of leaves when it is not satuated [12].
Because of the rapid change of vegetations during spring onset
and fall senescence, these multiday composite indexes cannot
accurately capture the transitions of vegetation states during
growing seasons. In some regions where cloud covers are high,
for example, in the Amazon Basin, these indexes are inadequate
in providing information on the structure and function of terres-
trial ecosystems, particularly in rain season, while vegetation
systems generally have enhanced ET and carbon uptake under
cloudy conditions [13], [1]. There are considerable gaps in un-
derstanding feedback mechanisms associated with evaporation
processes of land surfaces. The wide spectra of spatial and
temporal scales of climate system and inherent heterogeneity of
the biosphere also require improved remote sensing techniques
to study and monitor surface/canopy states, atmospheric and
environmental change processes, and the effect of variations in
vegetation on atmospheric dynamics and thermodynamics.

There is a long history to use passive microwave measure-
ments for monitoring vegetation and soil properties. Many re-
searches related microwave polarization difference temperature
of 37 GHz (MPDT) to soil moisture, surface roughness, canopy
structure and vegetation content [14]–[17], as MPDT decreases
with increasing vegetation. Justice et al. [18] found that MPDT
is more sensitive to short vegetation (grass) than to dense veg-
etation (trees and shrubs). Calvet et al. [19] simulated the sen-
sitivity of multiple channel microwave brightness temperature
and normalized polarization differences (at 6.6, 10.7, 18, and
37 GHz) to biomass and air temperatures in the boundary layer.
They found the biomass effect is better discriminated at lower
frequencies. Background soil emission signals can make signif-
icant contributions to those vegetation indexes and let the phys-
ical explanations difficult. Recently, Shi et al. [20] proposed a
new microwave vegetation index (MVIs) for short vegetation
covers, based on the finding that bare soil emissions at two ad-
jacent frequencies of AMSR-E are highly correlated and can be
expressed as a liner function. As pointed out by Prigent et al.
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[21], atmospheric effects, especially cloud cover, is responsible
for a large part of the polarization difference and brightness tem-
peratures, casting doubt on the interpretation of simple indexes
solely in terms of surface properties.

To overcome the above limitations, we developed a novel
technique that links vegetation properties and ET fluxes with
an “emissivity difference vegetation index” (EDVI) [22]–[24].
EDVI is derived from a combination of satellite microwave mea-
surements with visible and infrared observations through accu-
rately atmospheric correction. This technique was demonstrated
applicable under all-weather conditions for monitoring vege-
tation biomass and ecosystem exchange processes in Harvard
forest. The characteristics of vegetation in Amazon might differ
from those of Harvard forest. As discussed by Min and Lin [22],
[23], EDVI is mainly related to the canopy properties of vege-
tation water content between two effective emission layers. Al-
though the absolute values for a given VWC in the crown layer
may be different in Harvard forest and Amazon, the general de-
pendency of VWC should be similar. In order to demonstrate
the capability of EDVI technique over large spatial domain for
regional and global applications, the technique should be tested
in various climate conditions.

The Amazon Basin contains almost one half of the world’s
undisturbed tropical evergreen forest as well as large areas of
tropical savanna. The forests account for about 10% of the
world’s terrestrial primary productivity and the carbon stored
in land ecosystems. Furthermore, the Amazon region generally
has significant cloudiness although it varies greatly between the
wet and dry seasons. As moderate cloudy skies substantially
enhance ET and carbon uptake, it is crucial to understand vege-
tation-atmosphere feedback under all weather conditions [13],
[1]. Due to the excessive cloudiness in the region, the classic
vegetation indexes from optical sensors may bias or even fail to
provide information of vegetation structure and distribution. In
this study we applied this technique to the Tropics to illustrate
its applicability for various vegetation and weather conditions.
We retrieved the EDVI index over the Amazon Basin by mainly
combining AMSR-E and MODIS measurements from Aqua
for the year 2004.

II. METHOD AND DATASETS

Physical properties of vegetation, such as plant water content,
vegetation coverage, canopy structure, vegetation phenology,
and physical temperature, are major factors in determining satel-
lite measured radiances ([25]–[27], and references therein). Pas-
sive microwave observations have different sensitivities for the
dynamic ranges of vegetation structure and biomass from those
of visible and infrared measurements, and are less affected by
aerosols and clouds [28]. Microwave land surface emissivity
(MLSE) can be derived from satellite measurements during both
day and night times under all-sky (nonprecipitating) conditions
[29]. Thus, a synergism of microwave, infrared, and visible mea-
surements offers great potential to monitor surface and vegeta-
tion properties on a continuous basis.

There is a semi-empirical relationship between the optical
depth at microwave wavelengths and vegetation water content,
which varies systematically with both wavelength and canopy
structure [30]. The microwave surface emission above a canopy

is an integration of the microwave radiation from the whole
canopy vertical profile and the soil weighted by its transmission.
The emissivity observed at longer wavelengths with a weaker
attenuation by the canopy generally represents an effectively
thicker layer than those observed at shorter wavelengths with
stronger attenuation. Thus, we introduce the microwave land
surface emissivity difference between two wavelengths to in-
dicate vegetation water content and other vegetation properties
of the canopy with a minimal influence of the soil emission un-
derneath vegetation canopy [22], [23]. Analogous to NDVI, the
EDVI is defined as

where represents a polarization at vertical or horizontal
direction, and and indicate the two wavelengths of mi-
crowave measurements. Based on our studies, we chose a pair
of channels at about 19 and 37 GHz from current satellite
passive microwave sensors as the basic set to investigate their
potential for detecting vegetation physiology changes and
estimating land-atmosphere exchange. For Special Sensor Mi-
crowave/Imager (SSM/I) and Advanced Microwave Scanning
Radiometer (AMSR-E), the pair is from measurements at 19.4
and 37.0 GHz and at 18.7 and 36.5 GHz, respectively. The

represents the thicker effective emission layer deeper
into the canopy while represents the thinner one.
Thus, EDVI is related to the canopy properties of vegetation
water content and structure of two effective emission layers.
The studies of Min and Lin [22], [23] found that the EDVI is
sensitive to leaf development through vegetation water content
of the crown layer of the forest canopy, and demonstrated that
the spring onset and growing season duration can be determined
accurately from the time series of satellite estimated EDVI
within uncertainties of approximately 3 and 7 days for spring
onset and growing season duration, respectively, compared
to in-situ observations. The leaf growing stage can also be
monitored by a normalized EDVI.

All datasets used in this study are summarized in Fig. 1. We
retrieved MLSE values of 18.7 and 36.5 GHz from AMSR-E
Level 2A Global Swath spatially-resampled brightness tem-
peratures, AE_L2A, using a combined technique [22]. These
MLSE values are estimated based on an atmospheric microwave
radiative transfer (MWRT) model [31], which accurately ac-
counts for the atmospheric absorption and emission of gases and
clouds, especially the temperature and pressure dependences
of these radiative properties [32]. The scattering of upwelling
microwave radiation is primarily due to precipitation-sized
hydrometeors present above the emitting layer [33]–[35]. To
avoid the complexity of microwave scattering and the depen-
dence of observed radiances on precipitating hydrometeors, we
only processed nonprecipitating pixels identified by AMSR-E
product of rain rate/type (AE_Rain). We further filtered out
the pixels that Tb85V were less than 285 K to minimize the
scattering effects on our retrievals. The information of surface
types, i.e., ocean, land, coast, and sea ice, from AE_Rain
product are also used to determine validity of pixels for MLSE
retrievals: only pixels identified as “land” are included. The
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Fig. 1. Summary of all datasets used in EDVI retrieving and in the intercomparison of this study.

major inputs of the model are effective land surface skin tem-
perature, column water vapor (CWV), cloud water amount,
surface air temperature and pressure. The NCEP reanalysis data
is used to estimate CWV and surface air temperature values.
Cloud water amount is adopted from MODIS cloud products
(MYD06L2), which are retrieved from combined visible and
infrared measurements. Specifically, cloud fraction, cloud
phase, cloud top temperature, and cloud water and ice paths are
used and projected into AMSR-E spatial grids in the retrievals.
The vertical distributions of atmospheric temperature, pressure,
and gas abundance are constructed based on climatological
profiles [36] and interpolated to conform to the surface temper-
ature and pressure as well as CWV values derived from NCEP
reanalysis data. As indicated by the study of Min and Lin
[22], [23], the horizontal component of the EDVI is generally
more sensitive to a broader range of canopy properties, such as
VWC, canopy leaf/stem structure, and orientation, with a larger
dynamic range. The crosstalk among these canopy properties
may reduce the correlation of the horizontally polarized EDVI
with the specific variable evapotranspiration fraction (EF), i.e,
evapotranspiration. As shown by Min and Lin [22], the vertical
component of the EDVI has a higher correlation with vegetation
state and evapotranspiration than the horizontal component.
Thus, we used the vertical component of EDVI in the following
discussion.

In order to validate and evaluate our retrievals, MODIS land
surface reflectance (MYD09GHK) was used to derive instan-

taneous NDVI and EVI under clear-sky conditions. Together
with the MODIS standard product of 16-day NDVI and EVI
composites (MYD13A1), we projected NDVI and EVI values
into the AMSR-E spatial grids for the comparison. We also used
AMSR-E retrieved surface VWC and soil moisture (AE_land)
for the evaluation [26], [37].

III. RESULTS

Fig. 2 shows retrieved MLSEs at 19 and 37 GHz and de-
rived EDVI based on an Aqua data on August 30, 2004. In
the 25 30 domain of this case, over 98% of the land sur-
face pixels were valid for MLSE retrievals. In other words, mi-
crowave based MLSE and EDVI can provide the vegetation in-
formation over 98% of the land surface over the Amazon re-
gion. MLSE is indicative of moisture conditions of combined
canopy and underneath soil. There is a soil moisture and veg-
etation gradient from north to south, with low MLSEs at the
Amazon basin. Inferred EDVI, which represents vegetation con-
ditions, also clearly shows a gradient from north to south, cor-
responding to the dense vegetation of rain-forest in the northern
Amazon Basin to the savanna in the south. Several high MLSE
areas with very low EDVIs are savanna land. In the south-east
edge of the image, low EDVIs but relatively low MLSEs indi-
cate sparse vegetation with somewhat moist soils.

Evaluation and validation of retrieved products are keys to
the success of a retrieval algorithm. We utilized this case as a
basis to assess the uncertainty of our comprehensive retrievals.
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Fig. 2. Retrieved MLSEs at 19 and 37 GHz and derived EDVI over the Amazon Basin on August 30, 2004. (a) Instantaneous MLSE 19. (b) Instantaneous MLSE
37. (c) Instantaneous EDVI.

Fig. 3. Comparison between perturbed and normal EDVI with four major error
sources. (a) Sensitivity to LWP. (b) Sensitivity to CWV. (c) Sensitivity to LST.
(d) Sensitivity to Tbobs.

There are four major error sources that could impact on retrieved
EDVIs, including the cloud liquid water path (LWP) retrieved
from MODIS, the column water vapor (CWV) estimated from
NCEP reanalysis, the land surface skin temperatures (LST) es-
timated from NCEP reanalysis, and the brightness temperatures
(Tb) at 19 and 37 GHz channels observed by AMSR-E. We
randomly perturbed each parameter within its maximum uncer-
tainty, based on its measurement or model uncertainty assess-
ment, and compared the perturbed retrievals with the normal
retrievals. As shown in Fig. 3, given maxmum uncertainties of

in LWP, in CWV, K in LST, and K in mi-
crowave Tb, respectively, the evaluated standard deviations of
EDVI range from 1.48E-4 to 4.88E-4, i.e., about 1.5% of the
averaged EDVI.

To validate our EDVI retrieval, we compared it with optical
vegetation indexes of NDVI and EVI as well as VWC retrieved
from microwave [37]. Since NDVI and EVI can only be re-
trieved under clear-sky condition, we compared those indexes in
the clear-sky subset of the same Aqua orbit data on August 30,
2004, shown in Fig. 4. In this 25 30 domain, the percentage
of clear-sky pixels in this normal dry season day is less than
14%. This illustrates that only a small fraction of the land can
be monitored by the classic vegetation indexes in the Amazon
region. However, over the same domain microwave based EDVI
can provide the vegetation information over 98% of the land
[Fig. 2(c)].

As shown in Fig. 4(c) and (d), NDVI (and EVI, as well) varies
substantially from 0.25 to 0.9, indicating substantial variability
of vegetation in the domain, corresponding to the vegetation dif-
ferences in the north and south. EDVI shows a consistent spa-
tial gradient with NDVI. We further divided the domain into
two sectors [see Fig. 4(a)], according to spatial occurrences and
vegetation conditions. For all clear-sky pixels, EDVI correlates
well with NDVI and EVI in each sector [Fig. 5(a) and (b)]. The
slopes between EDVI and NDVI in both sectors are consistent,
with statistically significant correlation coefficients of 0.44 and
0.62 for dense vegetation area A and sparse and short vegeta-
tion area B, respectively. Slightly better statistic characteristics
are evident for EDVI and EVI, due to less saturation of EVI.
Overall correlation coefficient in the entire domain is 0.54. Re-
trieved VWC from microwave measurements has slightly better
statistics with NDVI and EVI in the sparse and short vegeta-
tion region (area B) than that of EDVI. However, there are al-
most no correlations between VWC and NDVI (and EVI) in the
dense vegetation region (area A). The correlation coefficients
between EDVI and VWC are 0.05 and 0.52 in the areas of A
and B, respectively. Retrieved VWC may represent integrated
VWC for the entire canopy, including branches and trunks [26],
while EDVI (and NDVI) represent the upper-most portion of
vegetation [23]. It may be one reason for the poor correlations
of VWC with other indexes in the dense vegetation region. It
is worth noting that although branches and trunks contain most
water in the tree, they play a little direct role in the leaf evapo-
transpiration and photosynthesis processes. Retrieved VWC in
the dense vegetation does not represent the vegetation state in
terms of atmosphere-land interaction. Nonetheless, these statis-
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Fig. 4. Comparison among different vegetation indices under clear sky at the
Amazon on August 30, 2004: (a) the microwave emissivity difference vegetation
index (EDVI); (b) the vegetation water content (VWC) derived from AMSR-E;
(c) the normalized difference vegetation index (NDVI); (d) the enhanced vege-
tation index (EVI).

tics indicate EDVI is applicable to a variety of vegetation condi-
tions for atmosphere-land interactions, much better than VWC
in dense vegetation.

Furthermore, as shown in Fig. 6, the histograms of EDVI in-
side both sectors are close to a Gaussian distribution. The max-
imum occurrences of EDVI for sectors A and B are at values
of about 0.12 and 0.08, respectively. They show no sign of sat-
uration of EDVI even for the densest vegetation in the world,
the rainforest of the Amazon Basin. It is worth noting that al-
though the simple two-layer model of Min and Lin [22] shows
EDVI saturates at about the VWC value of 0.7 kg m , it may
not reflect real world since the model does not account for mul-
tiple scattering effects and only has the first order scattering in-
fluences (single scattering). With considerations of full multiple
scattering, the increase of EDVI with VWC is going to be slower
than what we simulated [22, Fig. 2(b)], and the saturation point
of EDVI on VWC should be much higher. On the other hand,
the VWC used in the current study is a standard product of
AMSR_E, representing the vegetation water content in the en-
tire column (including trucks and branches), however, the EDVI
is sensitive to the VWC in the crown layer of the canopy not
the entire column of the canopy. From Fig. 6(b), a similar con-
clusion can be drawn for microwave based retrievals of VWC,
which also show similar distributions to the EDVI histograms.
In contrast, as shown in Fig. 6(c), the histograms of NDVI il-
lustrate bi-mode distributions. NDVI is clearly saturated with

Fig. 5. Comparison among EDVI, VWC, NDVI, and EVI in the north and south
sectors under clear-sky conditions on August 30, 2004. (a) Instantaneous EDVI
(clear sky); (b) instantaneous VWC (clear sky); (c) instantaneous NDVI (clear
sky); (d) instantaneous EVI (clear sky).

distribution skewed to a high value of 0.9. Having similar char-
acteristics to NDVI, EVI exhibits much less problem of satura-
tion than NDVI.

Since optical indexes of NDVI and EVI are not retrievable
under cloudy conditions, we further compared instantaneous
all-weather EDVI against a 16-day composite NDVI and EVI,
shown in Fig. 7. In the figure, we also compared EDVI with
VWC. The spatial distribution of instantaneous EDVIs for
cloudy pixels corresponds well with the 16-day composites
of NDVI and EVI, illustrating EDVI can capture vegetation
variation under all-weather conditions.

In order to compare more quantitatively among these in-
dexes, we further divided the region into three sectors based on
vegetation characteristics, shown in Fig. 7(a). The sector C is a
transition area between dense vegetation area A and relatively
short and/or sparse vegetation area (savanna) B. The relation-
ships between EDVI and composite NDVI (EVI as well) for
cloudy pixels of ARMS-E are weaker than those from clear-sky
instantaneous comparisons, as shown in Fig. 8, because of
temporal mismatch and changes of vegetation as a result of
the presence of clouds. These relationships get stronger and
stronger from dense vegetation to sparse vegetation, due in part
to the saturation of optical indexes and sensitivity differences
among different vegetation indexes. Note that the relationships
between VWC and NDVI (and EVI) are weaker than those
between EDVI and NDVI (and EVI), except for sparse vege-
tation area (sector B). This is consistent with the finding under
clear-sky conditions.

A recent study has shown a large seasonal swing in leaf area
for Amazon rainforests, which may be critical to the initiation
of the transition from dry to wet season and seasonal carbon
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Fig. 6. Histograms of EDVI, VWC, NDVI, and EVI for both A and B sectors.

Fig. 7. Comparison among different vegetation indices under all-weather con-
ditions at the Amazon on August 30, 2004: (a) instantaneous EDVI; (b) instan-
taneous VWC; (c) 16-day composite NDVI; and (d) 16-day composite EVI.
(a) Instantaneous EDVI (all sky); (b) instantaneous VWC (all sky); (c) 16-day
NDVI (all sky); (d) 16-day EVI (all sky).

balance between photosynethetic gains and respiratory losses
in tropical forests [38]. It could have substantial hydrological
and biogeochemical significances. As Myneni et al. [38] pointed
out, it is crucial to minimize the impact of clouds on optical veg-
etation indexes to monitor seasonal variation of vegetation since
there is significant cloudiness in the Amazon region. In contrast
to classic vegetation indexes of NDVI and EVI, the EDVI is in-
sensitive to clouds and can be retrieved under both clear-sky and
cloudy conditions. Because of the severity of NDVI saturation,
we used EVI for the following discussion.

Fig. 9 shows the time series of retrieved EDVI and EVI at
one LBA (large-scale biosphere-atmosphere experiment) site of
Km67, which is a primary forest. In order to increase temporal
samples for EVI, we derived the EVI from reflectances of ten
lowest values (500 m resolution of MODIS) within a footprint
of AMSR-E (27 16 km ), if MODIS cloud mask identifies

these MODIS pixels as clear-sky pixels. For doing so, we al-
lowed EVI to be retrieved under the broken cloud conditions
even when the cloud cover in the AMSR-E footprint was up to
99%. For the comparison, we ignored the vegetation variability
within the AMSR-E footprint. Even though, the EVI can only
be derived by about 27% of all AMSR-E pixels of Aqua over-
passes. If we further restrained cloud cover to less than 50% over
the AMSR pixels, the retrievable samples of EVI are limited to
about 16%, mostly during the dry season. There are some dif-
ferences of retrieved EVIs with different cloud cover constraints
(99% versus 50%), illustrating the inhomogeneous vegetation
within the AMSR-E footprint. It is clear, though, that the tem-
poral variations of EDVI (dark solid curve) are consistent with
the smoothed variations of instantaneous EVI retrievals with a
cloud cover constraint of 99% (light solid curve) at the site,
similar to the spatial statistical analysis. Both EDVI and EVI
decrease from the wet season to the early dry season and then
increase in the late dry season. However, if simply using the
16-day composite EVI data for the Km67 site directly from the
MODIS standard product without further screening cloud con-
tamination (dashed curve), the 16-day composite EVI increased
slightly from the wet season to the dry season. The different
seasonality of short-time scale averages with that of the 16-day
composites manifests the issue of cloud impacts on classic op-
tical vegetation indexes and demonstrates the advantage of all-
weather measurements of microwave based EDVI. With high
temporal resolution, EDVI can monitor vegetation changes even
down to the synoptic (a few days) or smaller scales [24], which is
critically important for terrestrial hydrological, ecological, and
biogeochemical cycling as well as climate modeling. Further-
more, as discussed in Min and Lin [22] and Li et al. [24], long
term seasonal trend of EDVI is linked to variances of canopy
resistance due to the interrelationship among leaf development,
environmental condition, and microwave radiation. Short term
changes of EDVI caused by synoptic scale weather variations
can be used to parameterize the response of vegetation resis-
tance to the quick changes of environmental factors including
water vapor deficit, water potential and others. Thus, retrieved
EDVI can also be used to estimate evapotranspiration (ET) from
the first principle of the surface energy balance model [24].

IV. SUMMARY AND DISCUSSION

Characterization of ET and carbon uptake processes is essen-
tial in understanding the responses of climate and terrestrial eco-
logical systems to climate change and variation, which needs ad-
vanced remote sensing tools to represent vegetation states. Due
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Fig. 8. Comparison of EDVI and VWC with composite NDVI and EVI in three sectors under all-weather conditions on August 30, 2004.

Fig. 9. Time series of EDVI and EVI at an LBA Km67 site. Solid circles repre-
sent EDVI; open circles and squares represent EVI with upper limit cloud cov-
erage 99% and 50%, respectively. Solid triangles represent 16-day composite
EVI. Black and gray solid curves represent smoothed EDVI and EVI, respec-
tively.

to the limitations of classic optical indexes, we used our newly
developed microwave technique [22], [23] to link the “emis-
sivity difference vegetation index” (EDVI) to vegetation prop-
erties over the Amazon basin. The EDVI, retrieved from a com-
bination of satellite microwave, visible and infrared measure-
ments, provides an accurate measure of vegetation state under
all-weather conditions, where classic optical indexes are un-
available.

At a normal dry season day in the Amazon region, EDVI can
provide the vegetation information over 98% of the land sur-

face while the classic vegetation indexes can be obtainable only
for a small fraction (14%) of land surface. For a particular foot-
print of microwave measurements in the Amazon Basin, with
the least constraints of cloudy conditions, the frequency of re-
trievable classic vegetation indexes is only 1/3 of the microwave
based EDVI. As illustrated through the intercomparison, EDVI
captures vegetation variation from dense vegetation (rain-forest)
to short and/or sparse vegetation (savanna) under all-weather
conditions. Good relationships between microwave based EDVI
and optical indexes of NDVI and EVI are found for various veg-
etation conditions. More importantly, EDVI shows no sign of
saturation even for the tropical rain forest in the Amazon Basin,
while NDVI (and EVI to a lesser extent) is clearly saturated.
Comparison of microwave based VWC with those indexes in-
dicated that VWC has high correlations with vegetation indexes
for sparse vegetation and has no correlation for dense vegeta-
tion. Different vegetation indexes may be responsive to different
dynamic ranges of vegetation structure and biomass under var-
ious sky conditions.

Since the land surface functions as a heterogeneous boundary
between the atmosphere and biosphere, the physical, biological
and chemical processes related to carbon, energy and water cy-
cles are strongly spatio-temporal scales dependent. This depen-
dence requires observational capability with spatial resolutions
from point (surface site or footprint of optical sensor), local
(satellite microwave footprint km), and regional to global
scales, and with temporal resolutions from minutes for site ob-
servations, hours for multiple satellite measurements, to daily
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and monthly averages for regional and global composites. Thus,
it is extremely useful to generate a unique high spatial and tem-
poral resolution vegetation index by combining high temporal
resolution microwave based EDVI with high spatial resolution
optical indexes. The synergism product may shed a light on
better monitoring and understanding of the exchange processes
of land surface and atmosphere.

As a new microwave-related vegetation index, the interpreta-
tions of EDVI deserve more detailed studies. The multiple scat-
tering from trees may play an important role in determining the
upward microwave signals. And sub-pixel contamination due to
open water and wetlands may also introduce additional uncer-
tainties in the EDVI retrievals.
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